

First Enantioselective Synthesis of (+)-(3R,3aS,6aS)-3-Hydroxy-3,3a,4,6a-tetrahydrocyclopenta[b]furan-2-one - a Versatile Chiral Heterocyclic Building Block

Steffen Kudis and Günter Helmchen*

Organisch-Chemisches Institut der Universität Heidelberg, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany

Received 2 February 1998; accepted 11 February 1998

Abstract: Asymmetric Pd-catalyzed allylic alkylations of 2-acetoxymalonates with 2-cyclopentenyl chloride are described. With the cymantrene based phosphinooxazoline 2 as chiral ligand enantiomeric excess of > 99 % and > 90 % yield were obtained. Alkylation products were transformed in three steps to (+)-(3R,3aS,6aS)-3-hydroxy-3,3a,4,6a-tetrahydrocyclopenta[b]furan-2-one (1a) in up to 52 % yield. © 1998 Elsevier Science Ltd. All rights reserved.

The bicyclic lactone **1a** (Scheme 1) is a versatile building block for syntheses of a variety of important natural products, e.g. brefeldin A,^{1,2} mevinolin,³ aristeromycin and carbodine,⁴ 5'-homo-carbocyclic nucleosides,⁵ carbocyclic analogs of polyoxins and nikkomycins,⁶ the anti-HIV agent carbovir⁷ and the antitumor agents sesbanimide A and B.⁸ The key building block **1a** has so far been prepared by enzyme catalyzed kinetic resolution of the racemic compound which was obtained *via* Diels-Alder reaction of cyclopentadiene and glyoxylic acid.⁹ In view of the importance of the lactone **1a** a catalytic asymmetric synthesis appears highly desirable.

0040-4020/98/\$ - see front matter © 1998 Elsevier Science Ltd. All rights reserved. PII: S0040-4020(98)00497-9

^{*} Corresponding author. Email: en4@ix.urz.uni-heidelberg.de. Fax: 0049 6221 544205.

We have now worked out an enantioselective access to (+)-1a using as key step a palladium complex catalyzed allylic substitution of a cyclopentene derivative with the acetoxymalonates 3 (Scheme 2). In our original plan subsequent reactions according to Scheme 3 were envisaged on the basis of the expectation that diastereoselectivity in favor of 1b would be provided by base-catalyzed epimerization. However, serendipity gave rise to 1a because its precursor 7a was the main diastereoisomer after iodolactonization of a mixture of the hydroxyacids (R,R)-6 and (R,S)-6.

As chiral ligand in the allylic substitution the recently introduced cymantrene-based phosphinooxazoline 2¹¹ was used (Scheme 2). Generally, ligands^{12,13} of this type form chelate complexes in which the donor atoms P and N exhibit different electronic properties. In the case of 2 the ligand framework provides a concave moiety for the allylic system. Enantiomeric excess of 93-99 % ee with dimethyl sodiomalonate as nucleophile could be obtained in the case of five-, six- and seven-membered cyclic substrates.¹¹ However, high enantioselectivity does not necessarily imply practicability. With the normally used cycloalkenyl acetates or carbonates as substrates amounts of 1-3 mol % of the catalyst are required which is prohibitively high for preparative applications on a 100 g scale. With the more reactive cyclopentenyl chloride 4 as substrate down

to ca. 0.05 mol % of catalyst sufficed. However, with this substrate proper reaction conditions had to be worked out in order to avoid interference by the non-catalyzed substitution reaction.

Optimal conditions involved running the reaction at a temperature of 0 °C with *freshly distilled* starting materials and *dropwise* addition of a solution of the nucleophile in THF to a solution of the substrate 4 and the catalyst (molar ratio of substrate to catalyst: 1:0.0006). The reaction rate was very high, and complete conversion was reached after addition of the nucleophile. The products (+)-(R)-5a and (+)-(R)-5b were obtained in > 90 % yields with enantiomeric excesses of 98.5 and 99.5 %, respectively. Enantiomeric excess was determined by GC on a Chrompack Permethyl β -CD column. Baseline separations were achieved at 120 °C (5a) and 115 °C (5b), respectively. Enantiomeric products (-)-(S)-5a and (-)-(S)-5b were prepared by employing the enantiomeric ligand *ent*-2.

Scheme 2

The ester (+)-(R)-5a was saponified by heating it for 6 h under reflux with 3 N aqueous NaOH (Scheme 3). Fast heating of the resultant crude dicarboxylic acid to 190-200 °C effected decarboxylation to give the monoacid 6 after distillation in 90 % yield as mixture of the epimers (R,S)-6:(R,R)-6 in ratios varying from 1:1.1 to 1:1.4 (¹H NMR), respectively. After treating these mixtures with KI₃ in H₂O/THF 3:2 as solvent at room temperature, mixtures of the epimeric iodolactones 7a and 7b were obtained in 76-82 % yield with

epimer ratios between 2.2:1 and 3.8:1 (NMR), respectively. ¹H NMR monitoring of the iodolactonization showed that (R,R)-6 was consumed during a period of 60 minutes to give **7a** whereas (R,S)-6 was transformed to **7b** much slower and was still present in the reaction mixture after 30 h. Subsequent elimination of HI with 1,8-diazabicyclo[5.4.0]undec-7-en (DBU) in THF gave the hydroxylactones **1a** and **1b** in a 1.9:1 to 3.7:1 ratio (NMR) in 90-92 % yield. Separation of the diastereoisomers was carried out by column chromatography: 9 (+)-**1a**, $[\alpha]_D^{20} = +109.7$ (c = 1.41, CHCl₃), mp 83-85 °C; (+)-**1b**, $[\alpha]_D^{20} = +79.8$ (c = 1.03, CHCl₃) [lit. ^{2b}: $[\alpha]_D^{20} = +79$ (CHCl₃, c = 1)]. The major diastereoisomer (+)-**1a** was obtained pure in 61 % yield also by recrystallization from diethyl ether. ^{7a}

In order to obtain the thermodynamically more stable isomer 1b a solution of 1a and the Schwesinger base tert-butyliminotris(dimethylamino)phosphorane (P₄-tBu)¹⁴ (10 mol %) in THF was heated to reflux for 6 h to give a 1:2.6 mixture of 1a and 1b; 1b yielded a 1:2.8 mixture of 1a and 1b under the same reaction conditions. These experiments prove that 1b is the more stable isomer. However, it is also demonstrated that epimerization of the lactones 1 does not lead to preparatively useful enrichment of 1b.

5a
$$\frac{1. \text{ NaOH}}{2. \Delta}$$
 COOH $\frac{\text{KI}_3}{\text{THF/H}_2\text{O}}$ $\frac{\text{H}}{\text{NaHCO}_3}$ $\frac{\text{R}^1 = \text{H}}{\text{7b}: \text{R}^1 = \text{OH}, \text{R}^2 = \text{OH}}$ $\frac{\text{DBU, THF}}{\text{90-92 \%}}$ $\frac{\text{DBU, THF}}{\text{1b: R}^1 = \text{OH, R}^2 = \text{H}}$ $\frac{\text{H}}{\text{1b: R}^2 = \text{OH}}$ $\frac{\text{R}^2 = \text{OH}}{\text{1b: R}^2 = \text{OH}}$ $\frac{\text{R}^2 = \text{OH}}{\text{1b: R}^2 = \text{OH}}$ $\frac{\text{R}^2 = \text{OH}}{\text{COOH}}$ $\frac{\text{H}}{\text{H}}$ $\frac{\text{R}^2 = \text{OH}}{\text{H}}$ $\frac{\text{R}^2 = \text{OH}}{\text{OH}}$ $\frac{\text{H}}{\text{OH}}$ $\frac{\text{R}^2 = \text{OH}}{\text{H}}$ $\frac{\text{COOH}}{\text{H}}$ $\frac{\text{COOH}}{\text{H}}$

Scheme 3

In conclusion, we have developed an enantioselective synthesis of the enantiomerically pure lactone (+)-1a via palladium complex catalyzed allylic substitution. High reactivity and selectivity induced by the phosphinooxazoline ligand 2 in the catalytic step makes an economic and straightforward access possible: over four steps a mixture of the epimeric lactones 1a and 1b can be obtained in 59-66 % and, in the best case, pure 1a in up to 52 % overall yield by chromatographic separation of the epimers.

ACKNOWLEDGEMENTS

This work was supported by the Deutsche Forschungsgemeinschaft (SFB 247) and the Fonds der Chemischen Industrie.

EXPERIMENTAL SECTION

General. Melting points were not corrected. ¹H and ¹³C NMR spectra were recorded on a Bruker AC 300 spectrometer [300 MHz (¹H), 75.46 MHz (¹³C), CDCl₃] and mass spectra on a JEOL JMS 700 instrument. Optical rotations were determined with a Perkin Elmer 241 Polarimeter with CHCl₃ as solvent. For flash chromatography ICN Kieselgel S (0.032-0.063 mm) was used. Gas chromatography was carried out on a Hewlett Packard HP 5890 A instrument equipped with a Chrompack Permethyl β-CD, 50 m x 0.25 mm, column.

(+)-(R)-2-Acetoxy-2-(cyclopent-2-enyl)-malonic acid dimethyl ester (5a). Solution A: Under an argon atmosphere 34.20 g of 3a (0.180 mol) were added to a suspension of 4.08 g (0.170 mol) of sodium hydride in 450 ml of anhydrous THF. Upon stirring for 2 h at room temperature the suspension turned into a yellow solution. Solution B: A solution of 23.25 mg (0.0630 mmol) of $[(\eta^3-C_3H_5)PdCl]_2$ and 82.95 mg (0.1410 mmol) of 2 in 50 ml of anhydrous THF was stirred for 10 min at room temperature, then 16.5 g (0.161 mol) of freshly distilled 2-cyclopentenyl chloride (4) were added. Solution B was cooled to 0 °C and solution A was added dropwise during 2 h. Then aqueous NH₄Cl was added and the mixture was extracted with diethyl ether. The organic layer was washed with water and dried over Na₂SO₄. The solvents were evaporated and the residue distilled in vacuo (110 °C/1 torr) to give 39.54 g (96 %) of 5a as colorless oil (98.5 % ee). $[\alpha]_D^{20} = +79.1$ (c = 0.31, CHCl₃); ¹H NMR: $\delta = 1.94$ (m, 2H, CH₂), 2.12 (s, 3H, O₂CCH₃), 2.32 (m, 2H,

CH₂), 3.51 (m, 1H, C=C-CH), 3.74 (s, 6H, CO₂CH₃), 5.59 (dd, J = 5.5 Hz, J = 2.3 Hz, 1H, CH=), 5.86 (dd, J = 5.5 Hz, J = 2.1 Hz, 1H, CH=); ¹³C NMR: $\delta = 21.00$ (q, CH₃), 24.53 (t, CH₂), 32.38 (t, CH₂), 52.14 (d, C=C-CH), 53.22, 53.30 (2q, O-CH₃), 84.24 [s, C(COOCH₃)₂], 128.71, 135.00 (2d, CH=), 167.24 (s, COOCH₃), 170.35 (s, CH₃CO); GC: Permethyl β -CD, 120 °C, $t_R[(+)-(R)-5a]=32.2$ min, $t_R[(-)-(S)-5a]=33.2$ min; HRMS Calcd for $C_{12}H_{16}O_6$: 256.0947. Found: 256.0970; Anal. Calcd for $C_{12}H_{16}O_6$: C 56.25, H 6.25. Found: C 56.09, H 6.44.

(+)-(*R*)-2-Acetoxy-2-(cyclopent-2-enyl)-malonic acid diethyl ester (5b). 39.24 g (0.180 mol) of 3b were reacted with 16.5 g (0.161 mol) of 4 under exactly the same conditions as described above for 3a in the synthesis of 5a. After distillation (142 °C/3.8 *torr*) 42.95 g (94 %) of 5b were obtained as colorless oil (99.5 % ee). [α]_D²⁰ = +77.0 (c = 1.37, CHCl₃); ¹H NMR: δ = 1.25 (t, J = 7.2 Hz, 6H, CH₂CH₃), 1.93 (m, 2H, CH₂), 2.12 (s, 3H, O₂CCH₃), 2.30 (m, 2H, CH₂), 3.54 (m, 1H, C=C-CH), 4.22 (m, 4 H, CH₂CH₃), 5.63 (ddd, J = 7.8 Hz, J = 4.6 Hz, J = 2.2 Hz, 1H, CH=), 5.84 (ddd, J = 7.7 Hz, J = 4.3 Hz, J = 2.1 Hz, 1H, CH=); ¹³C NMR: δ = 13.76 (q, CH₂CH₃), 20.38 (q, COCH₃), 23.89 (t, CH₂), 31.77 (t, CH₂), 51.40 (d, C=C-CH), 61.69, 61.73 (2q, O-CH₂), 83.66 [s, C(COOCH₃)₂], 128.57, 134.29 (2d, CH=), 166.09 (s, COOCH₂), 169.55 (s, CH₃CO); GC: Permethyl β-CD, 115 °C, t_R[(+)-(*R*)-5a] = 66.9 min, t_R[(-)-(*S*)-5a] = 68.0 min; HRMS-FAB (M+1) Calcd for C₁₄H₂₁O₆: 285.1338. Found: 285.1328; Anal. Calcd for C₁₂H₂₀O₆: C 59.15, H 7.04. Found: C 59.14, H 7.15.

2-[(1R)-Cyclopent-2-enyl]-hydroxyacetic acid (6). A vigorously stirred emulsion of 21.0 g (0.082 mol) of (+)-(R)-5a in 75 ml of 3 N aqueous NaOH was heated to reflux for 6 h. The resultant solution was extracted with 20 ml of diethyl ether and the organic layer was discarded. The aqueous solution was acidified with 6 N HCl and concentrated *in vacuo*. The solid residue was extracted six times with 100 ml of ethyl acetate. The solvent was removed by evaporation, the solid residue was dried *in vacuo* and for decarboxylation heated very fast to 190-200 °C for 20 min. It is important to rise the temperature quickly in order to obtain epimer (R,R)-6 preferentially. Distillation (150 °C/0.5 *torr*) gave 9.5 g (90 %) of a mixture of the epimers of 6 in a 1.35:1 ratio (1 H NMR). Colorless oil; 1 H NMR: δ = 1.79 (m, 1H, CH₂), 1.92 (m, 2H, CH₂), 2.11 (m, 1H, CH₂), 2.35 (m, 4H, CH₂) 3.22 (m, 2H, OH), 4.19 (d, J = 4.2 Hz, 1H, C=C-CH), 4.32 (d, J = 4.0 Hz, 1H, C=C-CH), 5.52 [(R,S)-6, dd, J = 5.7 Hz, J = 2.2 Hz, 1H, CH=), 5.65 [(R,S)-6, dd, J = 5.7 Hz, J = 2.2 Hz, 1H, CH=), 5.93 [(R,R)-6, dd, J = 5.8 Hz, J = 2.3 Hz, 1H, CH=), 5.97 [(R,R)-6, dd, J = 5.7 Hz, J = 2.2 Hz, 1H, CH=), 5.97 [(R,R)-6, dd, J = 5.7 Hz, J = 2.2 Hz, 1H, CH=]; 13 C NMR: δ = 23.19, 25.83, 32.17, 32.29 (4t, CH₂), 49.36, 49.48 (2d, CH=CH-CH), 71.99, 72.73 (2d, HO-CH), 127.25, 129.49, 134.34, 135.75 (4d, CH=), 177.90, 178.38 (2s, COOH); HRMS-FAB (M+1) Calcd for C_7 H₁₁O₃: 143.0708. Found: 143.0724.

(+)-(3*R*,3a*S*,6*R*,6a*R*)-3-Hydroxy-6-iodo-hexahydro-cyclopenta[b]furan-2-one (7a). A solution of 22.6 g (0.089 mol) of I₂ and 44.5 g (0.268 mol) of KI in 100 ml of water was added to a solution of 6.21 g (0.0437 mol) of 6 [1.35:1 mixture of (*R*,*R*)-6:(*R*,*S*)-6] in 120 ml of THF and 80 ml of a saturated aqueous NaHCO₃ solution. The mixture was stirred over night at room temperature and then a saturated aqueous Na₂S₂O₃ solution was added until the reaction mixture became colorless. The mixture was then extracted four times with 150 ml of ethyl acetate, the organic layer dried with Na₂SO₄ and evaporated down. Column chromatography on silica gel (8 x 5 cm) using hexane/ethyl acetate 1:1 as eluent gave 9.01 g (77 %) of a 3.8:1 mixture of 7a and 7b. From a solution of the epimers in hexane/ethyl acetate 6.13 g (52 %) of pure diastereomer (+)-7a crystallized as colorless needles. 7a: mp 126-127 °C; [α]_D²⁰ = +3.1 (c = 7.2, CHCl₃); ¹H NMR of 7a: δ = 2.03 [(m, 4H (and 2H of 7b), CH₂], 3.00 (m, 1H, OH), 3.32 (m, 1H, OH-CH-CH), 4.42 (d, *J* = 3.5 Hz, 1H, I-CH), 4.57 (d, *J* = 9.0 Hz, 1H, CH-O-CO), 5.06 (d, *J* = 5.1 Hz, 1H, CH-OH), 5.28 (7b, d, *J* = 6.1 Hz, 1H, CH-OH); ¹³C NMR of 7a: δ = 21.04 (t, CH₂), 28.43 (d, CH), 34.76 (t, CH₂), 41.60 (d, CH), 68.80 (d, CH), 89.15 (d, CH), 176.98 (s, CO); ¹³C NMR of 7b: δ = 27.44 (t, CH₂), 28.24 (d, CH), 34.87 (t, CH₂), 44.80 (d, CH), 74.41 (d, CH), 91.50 (d, CH), 176.23 (s, CO); HRMS-FAB (M+1) Calcd for C₇H₁₀IO₃: 268.9675. Found: 268.9684; Anal. Calcd for C₇H₁₀IO₃: C 31.34, H 3.36. Found: C 31.45, H 3.41.

(+)-(3R,3aS,6aS)-3-Hydroxy-3,3a,4,6a-tetrahydro-cyclopenta[b]furan-2-one (1a) and (+)-(3S,3aS,6aS)-3-Hydroxy-3,3a,4,6a-tetrahydro-cyclopenta[b]furan-2-one (1b). A mixture of 3.96 g (26.05 mmol) of 1,8-diazabicyclo[5.4.0]undec-7-en and 3.00 g (11.2 mmol) of 7 (7a:7b = 3.8:1) in 100 ml of anhydrous THF was stirred and heated to reflux for 4 h. The resultant solution was cooled to room temperature and 1 N HCl was added until the mixture became acidic. Then it was extracted four times with 50 ml of ethyl acetate. The organic layer was washed with 1 N HCl, water and brine. After drying over Na₂SO₄ the solvents were removed *in vacuo* to give 1.44 g (92 %) of a 3.7:1 mixture of 1a and 1b. Chromatography on silica gel (8 x 40 cm) using hexane/ethyl acetate 9:1 as eluent gave 1.12 g (72 %) of 1a and 0.27 g (17 %) of 1b. 0.18 g (6 %) of 7 were recovered. From a solution of the 3.7:1 mixture of epimers in diethyl ether pure (+)-1a crystallized in 61 % yield.

(+)-1a: Colorless needlelike prisms, mp 83-85 °C; $[α]_D^{20} = +109.7$ (c = 1.41, CHCl₃); ¹H NMR: δ = 2.44 (dd, J = 18.5 Hz, J = 9.5 Hz, 1H, CH₂), 2.74 (dd, J = 18.2 Hz, J = 5.9 Hz, 1H, CH₂), 3.18 (m, 1H, OH-CH-CH), 3.39 (s, 1H, OH), 4.71 (d, J = 9.4 Hz, 1H, CH-OH), 5.31 (dd, J = 6.4 Hz, J = 2.3 Hz, 1H, CH-O-CO), 5.91 (dd, J = 5.7 Hz, J = 2.3 Hz, 1H, CH=), 6.24 (dd, J = 5.4 Hz, J = 2.2 Hz, 1H, CH=); ¹³C NMR: δ = 30.60 (t, CH₂), 40.36 (d, HO-CH-CH), 69.03, 86.30 (2d, CH), 127.39, 140.89 (2d, CH=), 177.07 (s, CO); HRMS-FAB (M+1) Calcd for C₇H₉O₃: 141.0551. Found: 141.0545; Anal. Calcd for C₇H₈O₃: C 60.00, H 5.75. Found: C 60.02, H 5.79.

(+)-1b: Colorless oil; $[\alpha]_D^{20} = +79.8$ (c = 1.03, CHCl₃); ¹H NMR: $\delta = 2.55$ (d, J = 17.5 Hz, 1H, CH₂), 2.75 (ddd, J = 17.8 Hz, J = 7.3 Hz, J = 2.1 Hz, 1H, CH₂), 3.04 (m, J = 7.4 Hz, 1H, OH-CH-CH), 4.12 (d, J = 7.2 Hz, 1H, CH-OH), 4.28 (s, 1H, OH), 5.52 (d, J = 7.7 Hz, 1H, CH-O-CO), 5.89 (dd, J = 5.6 Hz, J = 2.1 Hz, 1H, CH=), 6.07 (d, J = 5.5 Hz, 1H, CH=); ¹³C NMR: $\delta = 36.50$ (t, CH₂), 43.96 (d, HO-CH-CH), 74.25, 87.18 (2d, CH), 129.28, 136.45 (2d, CH=), 177.46 (s, CO); HRMS-FAB (M+1) Calcd for C₇H₉O₃: 141.0551. Found: 141.0550; Anal. Calcd for C₇H₈O₃: C 60.00, H 5.75. Found: C 60.05, H 5.75.

REFERENCES AND NOTES

- (a) V. Betina, L. Drobnica, P. Nemec, M. J. Zenanova, J. Antibiot., Ser. A 1964, 17, 93.
 (b) G. Tamura, K. Ando, S. Susuki, A. Takatsuki, K. Arina, J. Antibiot. 1968, 21, 160.
- (a) G. Casy, G. Gorins, R. McCague, H. F. Olivo, S. M. Roberts, J. Chem. Soc., Chem. Commun. 1994, 1085-1086 and references cited therein. (b) A. J. Carnell, G. Casy, G. Gorins, A. Kompany-Saeid, R. McCague, H. F. Olivo, S. M. Roberts, A. J. Willets, J. Chem. Soc., Perkin Trans. 1 1994, 3431-3439.
- 3. R. McCague, H. F. Olivo, S. M. Roberts, Tetrahedron Lett. 1993, 34, 3785-3786.
- 4. F. Burlina, A. Favre, J. L. Fourrey, M. Thomas, Bioorg. Med. Chem. Lett. 1997, 7, 247-250.
- 5. H. F. Olivo, J. Yu, Tetrahedron: Asymmetry 1997, 8, 3785-3788.
- 6. V. K. Aggarwal, N. Monteiro, G. J. Tarver, S. D. Lindell, J. Org. Chem. 1996, 61, 1192-1193.
- 7. (a) R. A. MacKeith, R. McCague, H. F. Olivo, C. F. Palmer, S. M. Roberts, *J. Chem. Soc., Perkin Trans. I* 1993, 313-314. (b) B. M. Trost, Z. Shi, *J. Am. Chem. Soc.* 1996, 118, 3037-3038.
- 8. P. A. Grieco, K. J. Henry, J. J. Nunes, J. E. Matt, Jr., J. Chem. Soc., Chem. Commun. 1992, 368-370.
- 9. (a) A. Lubineau, J. Augé, N. Lubin, *Tedrahedron Lett.* 1991, 32, 7529-7530. (b) For chemical resolution see: F. Burlina, P. Clivio, J.-L. Fourrey, C. Riche, M. Thomas, *Tedrahedron Lett.* 1994, 35, 8151-8152. (c) A. Lubineau, J. Augé, E. Grand, N. Lubin, *Tedrahedron* 1994, 50, 10265-10276.
- 10. (a) For other uses of acetoxymalonates in allylic substitutions see ref. 7b. (b) Preparation of acyloxymalonates: H. Nemoto, Y. Kubota, Y. Yamamoto, *J. Org. Chem.* **1990**, *55*, 4515-4516.
- (a) G. Helmchen, S. Kudis, P. Sennhenn, H. Steinhagen, Pure Appl. Chem. 1997, 69, 513-518.
 (b) S. Kudis, G. Helmchen, submitted.
- (a) J. Sprinz, G. Helmchen, Tetrahedron Lett. 1993, 34, 1769-1772. (b) J. Sprinz, M. Kiefer, G. Helmchen, M. Reggelin, G. Huttner, O. Walter, L. Zsolnai, Tetrahedron Lett. 1994, 35, 1523-1526.
 (c) P. von Matt, O. Loiseleur, G. Koch, A. Pfaltz, C. Lefeber, T. Feucht, G. Helmchen, Tetrahedron: Asymmetry 1994, 5, 573-584.
- (a) P. von Matt, A. Pfaltz, Angew. Chem., 1993, 105, 614-615; Int. Ed. Engl. 1993, 32, 566-567.
 (b) G. J. Dawson, C. G. Frost, J. M. J. Williams, S. J. Coote, Tetrahedron Lett. 1993, 34, 3149-3150.
 (c) J. Kang, W. O. Cho, H. G. Cho, Tetrahedron: Asymmetry 1994, 5, 1347-1352. (d) A. Togni, Tetrahedron: Asymmetry 1991, 2, 683-690. (e) J. M. Brown, D. I. Hulmes, P. J. Guiry, Tetrahedron 1994, 50, 4493-4506.
- 14. R. Schwesinger, H. Schlemper, Angew. Chem. 1987, 99, 1212-1214; Int. Ed. Engl. 1987, 26, 1167.